| 
                               from tensorflow.keras.preprocessing import image 
                              import numpy as np 
                              import cv2 
                              #we are starting our web cam 
                              webcam=cv2.VideoCapture(0) 
                              cap = cv2.VideoCapture(0) 
                              
                              # Category dictionary 
                              categories = {0: 'ZERO', 1: 'ONE', 2: 'TWO', 3: 'THREE', 4: 'FOUR', 5: 'FIVE'} 
                              
                              s="" 
                              d={} 
                              p="" 
                              count=0 
                              
                              while True: 
                                   
                                  _, frame = cap.read() 
                                  # Simulating mirror image 
                                  frame = cv2.flip(frame, 1) 
                                   
                                  # Got this from collect-data.py 
                                  # Coordinates of the ROI 
                                  x1 = int(0.5*frame.shape[1]) 
                                  y1 = 10 
                                  x2 = frame.shape[1]-10 
                                  y2 = int(0.5*frame.shape[1]) 
                                  # Drawing the ROI 
                                  # The increment/decrement by 1 is to compensate for the bounding box 
                                  cv2.rectangle(frame, (x1-1, y1-1), (x2+1, y2+1), (255,0,0) ,1) 
                                  # Extracting the ROI 
                                  roi = frame[y1:y2, x1:x2] 
                                   
                                  # Resizing the ROI so it can be fed to the model for prediction 
                                  roi = cv2.resize(roi, (64, 64))  
                                  roi = cv2.cvtColor(roi, cv2.COLOR_BGR2GRAY) 
                                  _, test_image = cv2.threshold(roi, 120, 255, cv2.THRESH_BINARY) 
                                  cv2.imshow("test", test_image) 
                                  # Batch of 1 
                                  result = loaded_model.predict(test_image.reshape(1, 64, 64, 1)) 
                                  prediction = {'FIVE': result[0][0],  
                                                'FOUR': result[0][1],  
                                                'ONE': result[0][2], 
                                                'THREE': result[0][3], 
                                                'TWO': result[0][4], 
                                                'ZERO': result[0][5]} 
                                  max_key = max(prediction, key=prediction.get) 
                                  cv2.putText(test_image,max_key,(x1,y1),cv2.FONT_HERSHEY_SIMPLEX,1,(255, 0, 0),2)  
                                  print(max_key) 
                                  cv2.imshow("Frame", frame) 
                                  interrupt = cv2.waitKey(2) 
                                  if interrupt & 0xFF == 27: # esc key 
                                      break 
                              cap.release() 
                              
                              cv2.destroyAllWindows() 
                             |