class Solution:
def solveSudoku(self, board: List[List[str]]) -> None:
"""
Do not return anything, modify board in-place instead.
"""
self.board = board
self.val = self.PossibleVals()
self.Solver()
def PossibleVals(self):
a = "123456789"
d, val = {}, {}
for i in xrange(9):
for j in xrange(9):
ele = self.board[i][j]
if ele != ".":
d[("r", i)] = d.get(("r", i), []) + [ele]
d[("c", j)] = d.get(("c", j), []) + [ele]
d[(i//3, j//3)] = d.get((i//3, j//3), []) + [ele]
else:
val[(i,j)] = []
for (i,j) in val.keys():
inval = d.get(("r",i),[])+d.get(("c",j),[])+d.get((i/3,j/3),[])
val[(i,j)] = [n for n in a if n not in inval ]
return val
def Solver(self):
if len(self.val)==0:
return True
kee = min(self.val.keys(), key=lambda x: len(self.val[x]))
nums = self.val[kee]
for n in nums:
update = {kee:self.val[kee]}
if self.ValidOne(n, kee, update): # valid choice
if self.Solver(): # keep solving
return True
self.undo(kee, update) # invalid choice or didn't solve it => undo
return False
def ValidOne(self, n, kee, update):
self.board[kee[0]][kee[1]] = n
del self.val[kee]
i, j = kee
for ind in self.val.keys():
if n in self.val[ind]:
if ind[0]==i or ind[1]==j or (ind[0]/3,ind[1]/3)==(i/3,j/3):
update[ind] = n
self.val[ind].remove(n)
if len(self.val[ind])==0:
return False
return True
def undo(self, kee, update):
self.board[kee[0]][kee[1]]="."
for k in update:
if k not in self.val:
self.val[k]= update[k]
else:
self.val[k].append(update[k])
return None
|