Online Courses
Free Tutorials  Go to Your University  Placement Preparation 
0 like 0 dislike
376 views
in Examples, Exercises and Projects by (562 points)
edited by

In this article,you will get to know

  1. Master Method
  2. Master Theorem
  3. Its various observations
  4. Examples
  5. Problems and solutions 

Goeduhub's Top Online Courses @Udemy

For Indian Students- INR 360/- || For International Students- $9.99/-

S.No.

Course Name

 Coupon

1.

Tensorflow 2 & Keras:Deep Learning & Artificial Intelligence || Labeled as Highest Rated Course by Udemy

Apply Coupon

2.

Complete Machine Learning & Data Science with Python| ML A-Z Apply Coupon

3.

Complete Python Programming from scratch | Python Projects Apply Coupon
    More Courses

1 Answer

0 like 0 dislike
by (562 points)
selected by
 
Best answer

The Master Method

  • Master Method solves the recurrences of the form T(n)=aT(n/b)+f(n)

where, a≥1 and b>1 ,f(n) is an asymptotically positive function.

  • The above equation describes the running time of an algorithm that decides a problem of size n into subproblems each of size n/b. 

f(n) is the cost of dividing and combining the results of the subproblems i.e.

f(n)=D(n)+C(N)

  1. Master Theorem

  • Let a≥1 and b>1 be constants,let f(n) be a function,and let T(n) be defined on the non-negative integers by the recurrence
  • T(n)=aT(n/b)+f(n) where f(n)=∅(nklogpn) ,  k≥0 and p is real number.
  • Then ,T(n) can be bounded asymptotically as follows:

Case1: if a>bk, then T(n)=∅(nlog b​​​​​​a)

Case2: if a=bk

a)if p>-1 ,then T(n)=∅(nlogba logp+1n)

b)if p=-1,then T(n)=∅(nlogba log logn)

c)if p<-1,then T(n)=∅(nlogba)

Case3: if a<bk

 a) if p≥0,then T(n)=∅(nklogpn)

 b) if p<0,then T(n)=O(nk)

  1. Few examples

P) T(n)=3T(n/2)+n2

Solution:a=3,b=2,k=2,p=0

bk=22=4

⇒a<b

⇒T(n)=∅(nklogpn) 

⇒T(n)=∅(n2log0n) 

⇒T(n)=∅(n2)

P:2) T(n)=4T(n/2)+n2

Solution:a=4,b=2,k=2,p=0

bk=22=4

⇒a=bk=4

⇒T(n)=∅(nlog balogp+1n)

⇒T(n)=∅(nlog24log0+1n)

⇒T(n)=∅(n2logn)

  1. Few problems and solutions

P) T(n)=T(n/2)+n2

Solution:a=1,b=2,k=2,p=0

⇒bk=22=4

⇒a<bk

⇒T(n)=∅(nklogpn)

⇒T(n)=∅(n2log0n)

⇒T(n)=∅(n2)

P:2) T(n)=16T(n/4)+n

Solution:a=16,b=4,k=1,p=0

⇒bk=41=4

⇒a>bk 

⇒T(n)=∅(nlogba

⇒T(n)=∅(nlog416

⇒T(n)=∅(n2)

P:3) T(n)=2T(n/2)+nlogn

Solution a=2,b=2,k=1,p=1

⇒bk=21=2

⇒T(n)=∅(nlogbalogp+1n) ⇒T(n)=∅(nlog22log1+1n) ⇒T(n)=∅(nlog2n)

P:4)T(n)=2T(n/2)+n/logn

Solution: T(n)=2T(n/2)+nlog-1n

a=2,b=2,k=1,p=-1

⇒bk=21=2 

⇒T(n)=∅(nlogbaloglogn) ⇒T(n)=∅(nlog22loglogn)

⇒T(n)=∅(n loglogn)

P:5)T(n)=7T(n/3)+n2

Solution:a=7,b=3,k=2,p=0

⇒bk=32=9 

⇒T(n)=∅(nklogpn)

⇒ T(n)=∅(n2log0n)

⇒ T(n)=∅(n2)

P:6)T(n)=3T(n/4)+nlogn

Solution:a=3,b=4,k=1,p=1

⇒bk=41=4

⇒T(n)=∅(nklogpn) 

⇒T(n)=∅(n1log1n) 

⇒T(n)=∅(nlogn)

P:7)T(n)=√2T(n/2)+logn

Solution:a=√2=1.41≥1,b=2,k=0,p=1

⇒bk=20=1

⇒T(n)=∅(nlogba

⇒ T(n)=∅(nlog2√2

⇒T(n)=∅(√n)

P:8)T(n)=3T(n/2)+n

Solution:a=3,b=2,k=1,p=0

⇒bk=21=2

⇒T(n)=∅(nlogba)

⇒ T(n)=∅(nlog23)

P:9)T(n)=4T(n/2)+cn

Solution:a=4,b=2,k=1,p=0

⇒bk=21=2

⇒T(n)=∅(nlogba

⇒T(n)=∅(nlog24

⇒T(n)=∅(n²)

P:10)T(n)=2T(n/2)+√n

Solution:a=2,b=2,k=1/2,p=0

⇒bk=21=2 

⇒T(n)=∅(nlogba)

⇒ T(n)=∅(nlog22

⇒T(n)=∅(n)


3.3k questions

7.1k answers

394 comments

4.6k users

 Goeduhub:

About Us | Contact Us || Terms & Conditions | Privacy Policy || Youtube Channel || Telegram Channel © goeduhub.com Social::   |  | 
...